Skip to main content

RateLimiting based on load on nodes

We are a cloud based file storage company and we allow many access point to the cloud. One of the access point is Webdav api and people can use any webdav client to access the cloud. But some of the webdav client especially on mac OS are really abusive. Though the user is not doing any abusive action, the webdav client does aggressive caching so even when you are navigating at a top directory it does PROPFINDs for depth at 5 or 6 level to make the user experience seamless as if he is navigating local drive. This makes life miserable on the server because from some clients we get more than 1000 requests in a minute. If there are 5-10 clients do the webdav activity then it causes 100 or more propfinds per sec. Luckily the server is able to process these but it hurts other activities. So we needed to rate limit this. Now as the user is really not doing any abusive action it would be bad to slow down on penalize the user in normal circumstance, however if the server is under load then it would be worth while to throttle the user for some time.

Luckily Jdk1.6 has a light weight api to get system load average.

 public double getSystemLoadAverage() {
  OperatingSystemMXBean osStats = ManagementFactory.getOperatingSystemMXBean();
  double loadAverage = osStats.getSystemLoadAverage();
  return loadAverage;
 }


And now I can write code like

  if(throttlePropFinds(req, user)) {
   logger.info("Throttling due to excessive webdav requests from user {}", user.getId());
   if(throttlingHelper.isBlockUsers()) {
    double loadAverage = SpringBeanLocator.getJvmStatsLogger().getSystemLoadAverage();
    if (loadAverage > 4) {
     logger.info("Sending 503 as loadAverage>4 and excessive webdav requests from user {}", user.getId());
           resp.sendError(WebdavStatus.SC_SERVICE_UNAVAILABLE);
           return;
    }
   }
  }


The logic I used for propfind rate limiting is simple where I keep track of all users who made>1000 requests in last 5 min and only if loadAvg is >4, I send 503. For brevity I am not putting the code to count no of request made by users in last 5 min but I am using memcache to maintain the counters in one minute buckets.

Comments

Popular posts from this blog

RabbitMQ java clients for beginners

Here is a sample of a consumer and producer example for RabbitMQ. The steps are
Download ErlangDownload Rabbit MQ ServerDownload Rabbit MQ Java client jarsCompile and run the below two class and you are done.
This sample create a Durable Exchange, Queue and a Message. You will have to start the consumer first before you start the for the first time.

For more information on AMQP, Exchanges, Queues, read this excellent tutorial
http://blogs.digitar.com/jjww/2009/01/rabbits-and-warrens/

+++++++++++++++++RabbitMQProducer.java+++++++++++++++++++++++++++
import com.rabbitmq.client.Connection; import com.rabbitmq.client.Channel; import com.rabbitmq.client.*; public class RabbitMQProducer { public static void main(String []args) throws Exception { ConnectionFactory factory = new ConnectionFactory(); factory.setUsername("guest"); factory.setPassword("guest"); factory.setVirtualHost("/"); factory.setHost("127.0.0.1"); factory.setPort(5672); Conne…

What a rocky start to labor day weekend

Woke up by earthquake at 7:00 AM in morning and then couldn't get to sleep. I took a bath, made my tea and started checking emails and saw that after last night deployment three storage node out of 100s of nodes were running into Full GC. What was special about the 3 nodes was that each one was in a different Data centre but it was named same app02.  This got me curious I asked the node to be taken out of rotation and take a heap dump.  Yesterday night a new release has happened and I had upgraded spymemcached library version as new relic now natively supports instrumentation on it so it was a suspect. And the hunch was a bullseye, the heap dump clearly showed it taking 1.3G and full GCs were taking 6 sec but not claiming anything.



I have a quartz job in each jvm that takes a thread dump every 5 minutes and saves last 300 of them, checking few of them quickly showed a common thread among all 3 data centres. It seems there was a long running job that was trying to replicate pending…

Email slavery

It seems I have become an EmailSlave. The first half of the day is spent in just answering to emails. There are so many emails where I am copied but I need not be. There are many emails  where its a 1-2 page email and somewhere down someone says @KP please answer this.  So it seems daily my work schedule is:
Signin to newrelic and check anomalies for 15 min. Check emails related production exception report and yes there are a ton of these report daily. Need a better tool here as this model is not scalable. I need to reduce the incoming data at me to only see relevant data like what newrelic does. May be I need to create a webapp out of these emails.Check emails for next few minutes before team callsDo team callsThen again back to checking emails until a I have taken a best shot at answering everyone waiting for my reply.Attend team meetings on Tue/Thu
Being an architect and coder at heart I don't feel satisfied at end of the day if there is nothing tangible getting done at the end.…