Skip to main content

Have I started hating mysql and falling in love with distributed databases

It seems Mysql is rock solid if you want:
  1. Transactions
  2. ACID support
So I would still recommend mysql for any thing that is mission critical data and it should be the primary datastore for your transactions. But what about derived data, immutable data or analytical data?

In past I have built large scale cluster of mysql server storing metadata about billions of files and folders used by tens of thousands of customers daily and its scaling fine and working good, its still growing at a healthy rate and holding up.  But this requires a lot of baby sitting if you have 100s of nodes and you need to do
  1. replication
  2. add more nodes
  3. rebalancing data
  4. monitoring entire cluster
  5. Sharding
  6. Backup/restore
You have to write a lot of tooling and lot of monitoring/babysitting to scale the cluster. Plain stock Mysql will scale up to a limit but vertically scaling has its own issues. So +1 for Mysql but not everything should be stuffed there.

Recently me and my team built full text search/indexing on same dataset using elasticsearch and so far it hasn’t disappointed me. With just 1 engineer and 1 devops guy we are able to build a cluster per datacenter to store same data. The thing I liked most about Elasticsearch was half way through migration we started facing performance issues and we just added more nodes and the cluster rebalanced itself.  Also Elasticsearch has tools like kopf/HQ where I can monitor all nodes in one place.  For e.g. this is one of the smallest cluster that we just started migrating and as it grows if we see high load averages then we can add more data or client nodes.
















I don’t need an lot of DBAs to manage the cluster as elasticsearch has built in support for
  1. replication
  2. adding more nodes
  3. rebalancing data
  4. monitoring entire cluster
  5. Sharding
I had earlier built an event store to store events on top of mysql but I was storing only few months of events into it. Now I have to build a store that can store events for 7 years and I dont want to use Mysql for it as I dont want to baby sit it. Our events data is way huge than the metadata. Because every change to a file generates an event and over 7 years this could be a huge no of records. I dont want to manage an army of mysql servers so researching for some database that has good querying support and can store long lived data with eventual consistency and rock solid durability. You could store them using kafka or scribe but they lack good querying support.  I am still not sure if Elasticsearch is a good store for this because I don’t need search, I need querying based on some paths and time based querying. Also most querying will be on recent data and past data would be queried rarely. Logstash uses Elasticsearch in same fashion so I need to find something else and then compare with Elasticsearch.

Also I see a trend emerging that in today's world DBAs need to get out of cocoon and know more than just relational databases. There are a lot of new tools like OpenTSDB, HBase, Mongo, Cassandra, ElasticSearch, BigQuery that are now getting used to store BigData so they need to catch up and catch up fast. Google recently released BigTable http://venturebeat.com/2015/05/06/google-introduces-cloud-bigtable-managed-nosql-database-to-process-data-at-scale/ need to check it out. I had checked BigQuery but writes are cheap, its the reads that are costly when using things like BigQuery.

Comments

Popular posts from this blog

RabbitMQ java clients for beginners

Here is a sample of a consumer and producer example for RabbitMQ. The steps are
Download ErlangDownload Rabbit MQ ServerDownload Rabbit MQ Java client jarsCompile and run the below two class and you are done.
This sample create a Durable Exchange, Queue and a Message. You will have to start the consumer first before you start the for the first time.

For more information on AMQP, Exchanges, Queues, read this excellent tutorial
http://blogs.digitar.com/jjww/2009/01/rabbits-and-warrens/

+++++++++++++++++RabbitMQProducer.java+++++++++++++++++++++++++++
import com.rabbitmq.client.Connection; import com.rabbitmq.client.Channel; import com.rabbitmq.client.*; public class RabbitMQProducer { public static void main(String []args) throws Exception { ConnectionFactory factory = new ConnectionFactory(); factory.setUsername("guest"); factory.setPassword("guest"); factory.setVirtualHost("/"); factory.setHost("127.0.0.1"); factory.setPort(5672); Conne…

What a rocky start to labor day weekend

Woke up by earthquake at 7:00 AM in morning and then couldn't get to sleep. I took a bath, made my tea and started checking emails and saw that after last night deployment three storage node out of 100s of nodes were running into Full GC. What was special about the 3 nodes was that each one was in a different Data centre but it was named same app02.  This got me curious I asked the node to be taken out of rotation and take a heap dump.  Yesterday night a new release has happened and I had upgraded spymemcached library version as new relic now natively supports instrumentation on it so it was a suspect. And the hunch was a bullseye, the heap dump clearly showed it taking 1.3G and full GCs were taking 6 sec but not claiming anything.



I have a quartz job in each jvm that takes a thread dump every 5 minutes and saves last 300 of them, checking few of them quickly showed a common thread among all 3 data centres. It seems there was a long running job that was trying to replicate pending…

Email slavery

It seems I have become an EmailSlave. The first half of the day is spent in just answering to emails. There are so many emails where I am copied but I need not be. There are many emails  where its a 1-2 page email and somewhere down someone says @KP please answer this.  So it seems daily my work schedule is:
Signin to newrelic and check anomalies for 15 min. Check emails related production exception report and yes there are a ton of these report daily. Need a better tool here as this model is not scalable. I need to reduce the incoming data at me to only see relevant data like what newrelic does. May be I need to create a webapp out of these emails.Check emails for next few minutes before team callsDo team callsThen again back to checking emails until a I have taken a best shot at answering everyone waiting for my reply.Attend team meetings on Tue/Thu
Being an architect and coder at heart I don't feel satisfied at end of the day if there is nothing tangible getting done at the end.…